Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Sci Rep ; 14(1): 5418, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443618

RESUMEN

Data on the SARS-CoV-2 infection among primary health care workers (PHCWs) are scarce but essential to reflect on policy regarding prevention and control measures. We assessed the prevalence of PHCWs who have been infected by SARS-CoV-2 in comparison with modeling from the general population in metropolitan France, and associated factors. A cross-sectional study was conducted among general practitioners (GPs), pediatricians, dental and pharmacy workers in primary care between May and August 2021. Participants volunteered to provide a dried-blood spot for SARS-CoV-2 antibody assessment and completed a questionnaire. The primary outcome was defined as the detection of infection-induced antibodies (anti-nucleocapsid IgG, and for non-vaccinees: anti-Spike IgG and neutralizing antibodies) or previous self-reported infection (positive RT-qPCR or antigenic test, or positive ELISA test before vaccination). Estimates were adjusted using weights for representativeness and compared with prediction from the general population. Poisson regressions were used to quantify associated factors. The analysis included 1612 PHCWs. Weighted prevalences were: 31.7% (95% CI 27.5-36.0) for GPs, 28.7% (95% CI 24.4-33.0) for pediatricians, 25.2% (95% CI 20.6-31.0) for dentists, and 25.5% (95% CI 18.2-34.0) for pharmacists. Estimates were compatible with model predictions for the general population. PHCWs more likely to be infected were: GPs compared to pharmacist assistants (adjusted prevalence ratio [aPR] = 2.26; CI 95% 1.01-5.07), those living in Île-de-France (aPR = 1.53; CI 95% 1.14-2.05), South-East (aPR = 1.57; CI 95% 1.19-2.08), North-East (aPR = 1.81; CI 95% 1.38-2.37), and those having an unprotected contact with a COVID-19 case within the household (aPR = 1.48; CI 95% 1.22-1.80). Occupational factors were not associated with infection. In conclusion, the risk of SARS-CoV-2 exposure for PHCWs was more likely to have occurred in the community rather than at their workplace.


Asunto(s)
COVID-19 , Médicos Generales , Humanos , COVID-19/epidemiología , Prevalencia , SARS-CoV-2 , Estudios Transversales , Anticuerpos Neutralizantes , Francia/epidemiología , Inmunoglobulina G
2.
Infect Dis Now ; 54(5): 104886, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38494117

RESUMEN

OBJECTIVES: COVID-19 vaccine breakthrough infections were frequently reported during circulation of the Omicron variant. The ANRS|MIE CoviCompareP study investigated these infections in adults vaccinated and boosted with BNT162b2 [Pfizer-BioNTech] and with/without SARS-CoV-2 infection before vaccination. METHODS: In the first half of 2021, healthy adults (aged 18-45, 65-74 and 75 or older) received either one dose of BNT162b2 (n = 120) if they had a documented history of SARS-CoV-2 infection at least five months previously, or two doses (n = 147) if they had no history confirmed by negative serological tests. A first booster dose was administered at least 6 months after the primary vaccination, and a second booster dose, if any, was reported in the database. Neutralizing antibodies (NAbs) against the European (D614G) strain and the Omicron BA.1 variant were assessed up to 28 days after the first booster dose. A case-control analysis was performed for the 252 participants who were followed up in 2022, during the Omicron waves. RESULTS: From January to October 2022, 78/252 (31%) had a documented symptomatic breakthrough infection after full vaccination: 21/117 (18%) in those who had been infected before vaccination vs. 57/135 (42%) in those who had not. In a multivariate logistic regression model, factors associated with a lower risk of breakthrough infection were older age, a higher number of booster doses, and higher levels of Omicron BA.1 NAb titers in adults with infection before vaccination, but not in those without prior infection. CONCLUSION: Our results highlight the need to consider immune markers of protection in association with infection and vaccination history.

3.
JMIR Public Health Surveill ; 9: e46898, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015594

RESUMEN

BACKGROUND: The seroprevalence of SARS-CoV-2 infection in the French population was estimated with a representative, repeated cross-sectional survey based on residual sera from routine blood testing. These data contained no information on infection or vaccination status, thus limiting the ability to detail changes observed in the immunity level of the population over time. OBJECTIVE: Our aim is to predict the infected or vaccinated status of individuals in the French serosurveillance survey based only on the results of serological assays. Reference data on longitudinal serological profiles of seronegative, infected, and vaccinated individuals from another French cohort were used to build the predictive model. METHODS: A model of individual vaccination or infection status with respect to SARS-CoV-2 obtained from a machine learning procedure was proposed based on 3 complementary serological assays. This model was applied to the French nationwide serosurveillance survey from March 2020 to March 2022 to estimate the proportions of the population that were negative, infected, vaccinated, or infected and vaccinated. RESULTS: From February 2021 to March 2022, the estimated percentage of infected and unvaccinated individuals in France increased from 7.5% to 16.8%. During this period, the estimated percentage increased from 3.6% to 45.2% for vaccinated and uninfected individuals and from 2.1% to 29.1% for vaccinated and infected individuals. The decrease in the seronegative population can be largely attributed to vaccination. CONCLUSIONS: Combining results from the serosurveillance survey with more complete data from another longitudinal cohort completes the information retrieved from serosurveillance while keeping its protocol simple and easy to implement.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Transversales , SARS-CoV-2 , Estudios Seroepidemiológicos , Aprendizaje Automático , Vacunación
4.
Clin Exp Med ; 23(8): 4955-4965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906387

RESUMEN

It has been suggested that the outcomes of coronavirus disease 2019 (COVID-19) are better in individuals having recently received an influenza vaccine than in non-vaccinated individuals. We hypothesized that this association depends on the humoral responses against influenza viruses. We aim to assess the relationship between the humoral immunity against influenza and the 3-month all-cause mortality among hospitalized older patients with COVID-19. We performed an exploratory retrospective study of older patients (aged 65 and over) hospitalized for confirmed COVID-19 between November 2020 and June 2021. Previous humoral responses to influenza viruses were assessed using a hemagglutination inhibition assay on routinely collected blood samples. The study's primary outcome was the 3-month all-cause mortality, and the secondary outcomes were severe COVID-19 (oxygen requirement ≥ 6 L/min or ventilatory support) and complications (kidney or heart failure, thrombosis and bacterial infection). In the cohort of 95 patients with COVID-19, immunity against influenza vaccine subtypes/lineages was not significantly associated with 3-month all-cause mortality, with an OR [95%CI] of 0.22 [0.02-1.95] (p = 0.174) for the H1N1pdm09 subtype, 0.21 [0.03-1.24] (p = 0.081) for A/Hong Kong/2671/2019 H3N2 subtype, 1.98 [0.51-8.24] (p = 0.329) for the B/Victoria lineage, and 1.82 [0.40-8.45] (p = 0.437) for the B/Yamagata lineage. Immunity against influenza vaccine subtypes/lineages was also not significantly associated with severity and complication. Immunity against influenza subtypes/lineages included in the 2020-2021 vaccine was not associated with a lower 3-month all-cause mortality among COVID-19 hospitalized patients.Trial registration: The study was approved by a hospital committee with competency for research not requiring approval by an institutional review board (Tours University Medical Center, Tours, France: reference: 2021_015). All patients give the informed consent.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Anciano , Gripe Humana/prevención & control , Estudios Retrospectivos , Subtipo H3N2 del Virus de la Influenza A
5.
Viruses ; 15(9)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37766303

RESUMEN

Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Animales , Coronavirus/genética , Vietnam/epidemiología , Filogenia , Genotipo , Fenotipo , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Pandemias
6.
PLoS Comput Biol ; 19(8): e1010721, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37556476

RESUMEN

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2/genética , Movimiento Celular , Macaca fascicularis , Primates
7.
Emerg Infect Dis ; 29(8): 1696-1698, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379514

RESUMEN

We detected highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in a domestic cat that lived near a duck farm infected by a closely related virus in France during December 2022. Enhanced surveillance of symptomatic domestic carnivores in contact with infected birds is recommended to prevent further spread to mammals and humans.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Gatos , Subtipo H5N1 del Virus de la Influenza A/genética , Aves , Patos , Francia/epidemiología , Filogenia , Mamíferos
8.
Heliyon ; 9(6): e16664, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287613

RESUMEN

The SARS-CoV2 Omicron variants have acquired new Spike mutations leading to escape from the most of the currently available monoclonal antibody treatments reducing the options for patients suffering from severe Covid-19. Recently, both in vitro and in vivo data have suggested that Sotrovimab could retain partial activity against recent omicron sub-lineage such as BA.5 variants, including BQ.1.1. Here we report full efficacy of Sotrovimab against BQ.1.1 viral replication as measure by RT-qPCR in a non-human primate challengemodel.

10.
iScience ; 26(4): 106413, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968074

RESUMEN

The landscape of SARS-CoV-2 variants dramatically diversified with the simultaneous appearance of multiple subvariants originating from BA.2, BA.4, and BA.5 Omicron sub-lineages. They harbor a specific set of mutations in the spike that can make them more evasive to therapeutic monoclonal antibodies. In this study, we compared the neutralizing potential of monoclonal antibodies against the Omicron BA.2.75.2, BQ.1, BQ.1.1, and XBB variants, with a pre-Omicron Delta variant as a reference. Sotrovimab retains some activity against BA.2.75.2, BQ.1, and XBB as it did against BA.2/BA.5, but is less active against BQ.1.1. Within the Evusheld/AZD7442 cocktail, Cilgavimab lost all activity against all subvariants studied, resulting in loss of Evusheld activity. Finally, Bebtelovimab, while still active against BA.2.75, also lost all neutralizing activity against BQ.1, BQ.1.1, and XBB variants.

11.
EMBO Rep ; 24(4): e56055, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36876574

RESUMEN

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Mutación
12.
Proc Natl Acad Sci U S A ; 120(6): e2211098120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730204

RESUMEN

The segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process. Customized barcoded primers for targeted viral RNA sequencing enabled the analysis of 18,422 viral genotypes resulting from coinfection with two circulating human H1N1pdm09 and H3N2 IAVs. Results were highly reproducible, confirmed that genetic reassortment is far from random, and allowed accurate quantification of reassortants including rare events. In total, 159 out of the 254 possible reassortant genotypes were observed but with widely varied prevalence (from 0.038 to 8.45%). In cells where eight segments were detected, all 112 possible pairwise combinations of segments were observed. The inclusion of data from single cells where less than eight segments were detected allowed analysis of pairwise cosegregation between segments with very high confidence. Direct coupling analysis accurately predicted the fraction of pairwise segments and full genotypes. Overall, our results indicate that a large proportion of reassortant genotypes can emerge upon coinfection and be detected over a wide range of frequencies, highlighting the power of our tool for systematic and exhaustive monitoring of the reassortment potential of IAVs.


Asunto(s)
Coinfección , Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae , Virus Reordenados/genética , ARN Viral/genética , Análisis de Secuencia de ARN
13.
bioRxiv ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778275

RESUMEN

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks ( Neovison vison ) for fur was detected in several countries of Europe. The risk of a new reservoir formation and of a reverse zoonosis from minks was then a major concern. The aim of this study was to investigate the four French mink farms for the circulation of SARS-CoV-2 at the end of 2020. The investigations took place during the slaughtering period thus facilitating different types of sampling (swabs and blood). In one of the four mink farms, 96.6% of serum samples were positive in SARS-CoV-2 ELISA coated with purified N protein recombinant antigen and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced in this farm indicated the co-circulation of several lineages at the time of sampling. All SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled at the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.5 and 1.2% in the three other farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus highly similar to a mink coronavirus sequence observed in Danish farms in 2015. In addition, a mink Caliciviridae was identified in one of the two positive farms for Alphacoronavirus . The clinical impact of these unapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses in mink farms could contribute to explain the diversity of clinical symptoms noted in different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 within a mink farm would increase potentially the risk of viral recombination between alpha and betacoronaviruses already suggested in wild and domestic animals, as well as in humans. Author summary: France is not a country of major mink fur production. Following the SARS-CoV-2 contamination of mink farms in Denmark and the Netherlands, the question arose for the four French farms.The investigation conducted at the same time in the four farms revealed the contamination of one of them by a variant different from the one circulating at the same time in Denmark and the Netherlands mink farms. Investigation of three other farms free of SARS-CoV-2 contamination revealed the circulation of other viruses including a mink Alphacoronavirus and Caliciviridae , which could modify the symptomatology of SARS-CoV-2 infection in minks.

14.
Influenza Other Respir Viruses ; 17(1): e13069, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702797

RESUMEN

BACKGROUND: In 2021-2022, influenza A viruses dominated in Europe. The I-MOVE primary care network conducted a multicentre test-negative study to measure influenza vaccine effectiveness (VE). METHODS: Primary care practitioners collected information on patients presenting with acute respiratory infection. Cases were influenza A(H3N2) or A(H1N1)pdm09 RT-PCR positive, and controls were influenza virus negative. We calculated VE using logistic regression, adjusting for study site, age, sex, onset date, and presence of chronic conditions. RESULTS: Between week 40 2021 and week 20 2022, we included over 11 000 patients of whom 253 and 1595 were positive for influenza A(H1N1)pdm09 and A(H3N2), respectively. Overall VE against influenza A(H1N1)pdm09 was 75% (95% CI: 43-89) and 81% (95% CI: 45-93) among those aged 15-64 years. Overall VE against influenza A(H3N2) was 29% (95% CI: 12-42) and 25% (95% CI: -41 to 61), 33% (95% CI: 14-49), and 26% (95% CI: -22 to 55) among those aged 0-14, 15-64, and over 65 years, respectively. The A(H3N2) VE among the influenza vaccination target group was 20% (95% CI: -6 to 39). All 53 sequenced A(H1N1)pdm09 viruses belonged to clade 6B.1A.5a.1. Among 410 sequenced influenza A(H3N2) viruses, all but eight belonged to clade 3C.2a1b.2a.2. DISCUSSION: Despite antigenic mismatch between vaccine and circulating strains for influenza A(H3N2) and A(H1N1)pdm09, 2021-2022 VE estimates against circulating influenza A(H1N1)pdm09 were the highest within the I-MOVE network since the 2009 influenza pandemic. VE against A(H3N2) was lower than A(H1N1)pdm09, but at least one in five individuals vaccinated against influenza were protected against presentation to primary care with laboratory-confirmed influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Estudios de Casos y Controles , Europa (Continente)/epidemiología , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Atención Primaria de Salud , Vacunación , Eficacia de las Vacunas , Masculino , Femenino , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
15.
Infect Genet Evol ; 105: 105370, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36184049

RESUMEN

Since the first cases of SARS-CoV-2 infection in Wuhan in December 2019, this RNA virus gave rise to different viral lineages with different virological, epidemiological and immunological properties. Here we describe the dynamics of circulation of SARS-CoV-2 lineages in an Amazonian South American French overseas territory, French Guiana (FG). The data analyzed are based on the general epidemic course, and genomic surveillance data come from whole genome sequencing (WGS) as well as typing PCRs. From March 2020 to October 2021, four COVID-19 epidemic waves were observed in FG with an evolution of viral lineages influenced by virus introductions from continental France and above all by land-based introductions from neighbouring countries. The third epidemic wave from March to June 2021 was driven by a predominant Gamma introduced from Brazil and a less frequent Alpha introduced from France. This coexistence was completely substituted by Delta that initiated the fourth epidemic wave.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Guyana Francesa/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , Europa (Continente) , Brasil
16.
Environ Microbiol ; 24(10): 4725-4737, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36065993

RESUMEN

SARS-CoV-2 diagnosis is a cornerstone for the management of coronavirus disease 2019 (COVID-19). Numerous studies have assessed saliva performance over nasopharyngeal sampling (NPS), but data in young children are still rare. We explored saliva performance for SARS-CoV-2 detection by RT-PCR according to the time interval from initial symptoms or patient serological status. We collected 509 NPS and saliva paired samples at initial diagnosis from 166 children under 12 years of age (including 57 children under 6), 106 between 12 and 17, and 237 adults. In children under 12, overall detection rate for SARS-CoV-2 was comparable in saliva and NPS, with an overall agreement of 89.8%. Saliva sensitivity was significantly lower than that of NPS (77.1% compared to 95.8%) in pre-school and school-age children but regained 96% when considering seronegative children only. This pattern was also observed to a lesser degree in adolescents but not in adults. Sensitivity of saliva was independent of symptoms, in contrary to NPS, whose sensitivity decreased significantly in asymptomatic subjects. Performance of saliva is excellent in children under 12 at early stages of infection. This reinforces saliva as a collection method for early and unbiased SARS-CoV-2 detection and a less invasive alternative for young children.


Asunto(s)
Prueba de COVID-19 , COVID-19 , SARS-CoV-2 , Saliva , Adolescente , Adulto , Niño , Preescolar , Humanos , Técnicas de Laboratorio Clínico/métodos , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19/métodos , Nasofaringe/virología , Saliva/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
17.
Nat Commun ; 13(1): 5108, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042198

RESUMEN

The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infección por el Virus Zika , Virus Zika , Amidas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Macaca fascicularis , Pandemias , Primates , Pirazinas , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
18.
iScience ; 25(7): 104599, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35789859

RESUMEN

Pattern recognition receptors (PRRs) protect against microbial invasion by detecting specific molecular patterns found in pathogens and initiating an immune response. Although microbial-derived PRR ligands have been extensively characterized, the contribution and relevance of endogenous ligands to PRR activation remains overlooked. Here, we characterize the landscape of endogenous ligands that engage RIG-I-like receptors (RLRs) upon infection by different RNA viruses. In each infection, several RNAs transcribed by RNA polymerase III (Pol3) specifically engaged RLRs, particularly the family of Y RNAs. Sensing of Y RNAs was dependent on their mimicking of viral secondary structure and their 5'-triphosphate extremity. Further, we found that HIV-1 triggered a VPR-dependent downregulation of RNA triphosphatase DUSP11 in vitro and in vivo, inducing a transcriptome-wide change of cellular RNA 5'-triphosphorylation that licenses Y RNA immunogenicity. Overall, our work uncovers the contribution of endogenous RNAs to antiviral immunity and demonstrates the importance of this pathway in HIV-1 infection.

19.
Euro Surveill ; 27(26)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35775429

RESUMEN

As the COVID-19 pandemic began in early 2020, primary care influenza sentinel surveillance networks within the Influenza - Monitoring Vaccine Effectiveness in Europe (I-MOVE) consortium rapidly adapted to COVID-19 surveillance. This study maps system adaptations and lessons learned about aligning influenza and COVID-19 surveillance following ECDC / WHO/Europe recommendations and preparing for other diseases possibly emerging in the future. Using a qualitative approach, we describe the adaptations of seven sentinel sites in five European Union countries and the United Kingdom during the first pandemic phase (March-September 2020). Adaptations to sentinel systems were substantial (2/7 sites), moderate (2/7) or minor (3/7 sites). Most adaptations encompassed patient referral and sample collection pathways, laboratory testing and data collection. Strengths included established networks of primary care providers, highly qualified testing laboratories and stakeholder commitments. One challenge was the decreasing number of samples due to altered patient pathways. Lessons learned included flexibility establishing new routines and new laboratory testing. To enable simultaneous sentinel surveillance of influenza and COVID-19, experiences of the sentinel sites and testing infrastructure should be considered. The contradicting aims of rapid case finding and contact tracing, which are needed for control during a pandemic and regular surveillance, should be carefully balanced.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , Europa (Continente)/epidemiología , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Atención Primaria de Salud , Vigilancia de Guardia
20.
EClinicalMedicine ; 51: 101576, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35891947

RESUMEN

Background: The protective immunity against omicron following a BNT162b2 Pfizer booster dose among elderly individuals (ie, those aged >65 years) is not well characterised. Methods: In a community-based, prospective, longitudinal cohort study taking place in France in which 75 residents from three nursing homes were enrolled, we selected 38 residents who had received a two-dose regimen of mRNA vaccine and a booster dose of Pfizer BNT162b2 vaccine. We excluded individuals that did not receive three vaccine doses or did not have available sera samples. We measured anti-S IgG antibodies and neutralisation capacity in sera taken 56 (28-68) and 55 (48-64) days (median (range)) after the 2nd and 3rd vaccine doses, respectively. Antibodies targeting the SARS-CoV-2 Spike protein were measured with the S-Flow assay as binding antibody units per milliliter (BAU/mL). Neutralising activities in sera were measured as effective dilution 50% (ED50) with the S-Fuse assay using authentic isolates of delta and omicron BA.1. Findings: Among the 38 elderly individuals recruited to the cohort study between November 23rd, 2020 and April 29th, 2021, with median age of 88 (range 72-101) years, 30 (78.95%) had been previously infected with SARS-CoV-2. After three vaccine doses, serum neutralising activity was lower against omicron BA.1 (median ED50 of 774.5, range 15.0-34660.0) than the delta variant (median ED50 of 4972.0, range 213.7-66340.0), and higher among previously infected (ie, convalescent; median ED50 against omicron: 1088.0, range 32.6-34660.0) compared with infection-naive residents (median ED50 against omicron: 188.4, range 15.0-8918.0). During the French omicron wave in December 2021-January 2022, 75% (6/8) of naive residents were infected, compared to 25% (7/30) of convalescent residents (P=0.0114). Anti-Spike antibody levels and neutralising activity against omicron BA.1 after a third BNT162b2 booster dose were lower in those with breakthrough BA.1 infection (n=13) compared with those without (n=25), with a median of 1429.9 (range 670.9-3818.3) BAU/mL vs 2528.3 (range 695.4-8832.0) BAU/mL (P=0.029) and a median ED50 of 281.1 (range 15.0-2136.0) vs 1376.0 (range 32.6-34660.0) (P=0.0013), respectively. Interpretation: This study shows that elderly individuals who received three vaccine doses elicit neutralising antibodies against the omicron BA.1 variant of SARS-CoV-2. Elderly individuals who had also been previously infected showed higher neutralising activity compared with naive individuals. Yet, breakthrough infections with omicron occurred. Individuals with breakthrough infections had significantly lower neutralising titers compared to individuals without breakthrough infection. Thus, a fourth dose of vaccine may be useful in the elderly population to increase the level of neutralising antibodies and compensate for waning immunity. Funding: Institut Pasteur, Fondation pour la Recherche Médicale (FRM), European Health Emergency Preparedness and Response Authority (HERA), Agence nationale de recherches sur le sida et les hépatites virales - Maladies Infectieuses Emergentes (ANRS-MIE), Agence nationale de la recherche (ANR), Assistance Publique des Hôpitaux de Paris (AP-HP) and Fondation de France.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...